博客
关于我
hdu 1788 Chinese remainder theorem again(gcd)
阅读量:389 次
发布时间:2019-03-05

本文共 981 字,大约阅读时间需要 3 分钟。

Problem Description
我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的:
假设m1,m2,…,mk两两互素,则下面同余方程组:
x≡a1(mod m1)
x≡a2(mod m2)
x≡ak(mod mk)
在0<=<m1m2…mk内有唯一解。
记Mi=M/mi(1<=i<=k),因为(Mi,mi)=1,故有二个整数pi,qi满足Mipi+miqi=1,如果记ei=Mi/pi,那么会有:
ei≡0(mod mj),j!=i
ei≡1(mod mj),j=i
很显然,e1a1+e2a2+…+ekak就是方程组的一个解,这个解加减M的整数倍后就可以得到最小非负整数解。
这就是中国剩余定理及其求解过程。
现在有一个问题是这样的:
一个正整数N除以M1余(M1 - a),除以M2余(M2-a), 除以M3余(M3-a),总之, 除以MI余(MI-a),其中(a<Mi<100 i=1,2,…I),求满足条件的最小的数。

Input

输入数据包含多组测试实例,每个实例的第一行是两个整数I(1<I<10)和a,其中,I表示M的个数,a的含义如上所述,紧接着的一行是I个整数M1,M1…MI,I=0 并且a=0结束输入,不处理。

Output

对于每个测试实例,请在一行内输出满足条件的最小的数。每个实例的输出占一行。

Sample Input

2 1
2 3
0 0

Sample Output

5

Author

lcy

Source

2007省赛集训队练习赛(10)_以此感谢DOOMIII

#include
using namespace std;typedef long long ll;int main(){ int I,a; while(scanf("%d%d",&I,&a)!=EOF) { if(I==0&&a==0) break; ll ans=1,x; while(I--) { scanf("%lld",&x); ans=ans*x/__gcd(ans,x); } printf("%lld\n",ans-a); } }

转载地址:http://jlewz.baihongyu.com/

你可能感兴趣的文章
Nacos实战攻略:从入门到精通,全面掌握服务治理与配置管理!(下)
查看>>
Nacos心跳机制实现快速上下线
查看>>
nacos报错com.alibaba.nacos.shaded.io.grpc.StatusRuntimeException: UNAVAILABLE: io exception
查看>>
nacos服务提供和发现及客户端负载均衡配置
查看>>
Nacos服务注册与发现demo
查看>>
Nacos服务注册与发现的2种实现方法!
查看>>
nacos服务注册和发现原理简单实现案例
查看>>
Nacos服务注册总流程(源码分析)
查看>>
nacos服务注册流程
查看>>
Nacos服务部署安装
查看>>
nacos本地可以,上服务器报错
查看>>
Nacos注册Dubbo(2.7.x)以及namespace配置
查看>>
Nacos注册中心有几种调用方式?
查看>>
nacos注册失败,Feign调用失败,feign无法注入成我们的bean对象
查看>>
nacos源码 nacos注册中心1.4.x 源码 nacos源码如何下载 nacos 客户端源码下载地址 nacos discovery下载地址(一)
查看>>
nacos源码 nacos注册中心1.4.x 源码 spring cloud alibaba 的discovery做了什么 nacos客户端是如何启动的(二)
查看>>
nacos源码 nacos注册中心1.4.x 源码 如何注册服务 发送请求,nacos clinet客户端心跳 nacos 注册中心客户端如何发送的心跳 (三)
查看>>
Nacos源码分析:心跳机制、健康检查、服务发现、AP集群
查看>>
nacos看这一篇文章就够了
查看>>
Nacos简介、下载与配置持久化到Mysql
查看>>